Material didáctico para trabajar el sistema de numeración decimal y apreciar con claridad sus características. Puede ser usado desde los 3 años en adelante.
La creación de los bloques de base 10 se le atribuye a Zoltán Pál Dienes, un matemático húngaro que a través del juego, las canciones y los bailes hacía más atractivo el aprendizaje de las matemáticas a las niñas y a los niños.
Los bloques multibase están hechos de madera, plástico u otro material resistente a la manipulación. Están compuestos por cubos, barras, placas y bloques:
- Los cubos pequeños representan a las unidades y suelen medir 1x1x1 cm
- Las barras formadas por 10 unidades en línea son las decenas
- Las placas de 10×10 unidades representan las centenas
- Los bloques formados por 10 placas apiladas son los millares
Existen otros tipos de bloques base 10 para representar las unidades, decenas, centenas y millares, como por ejemplo el material de banco Montessori que en vez de cubos trae un conjunto de perlas doradas que pueden estar sueltas (unidades), juntas de 10 en 10 (decenas), formando placas de 10 barras una junto a otra (centenas) y un cubo grande equivalente a juntar 10 placas (millar).
Competencias didácticas
Este material permite trabajar aspectos como:
- la estructura del sistema de numeración decimal
- el concepto de unidad, tipos de unidades y orden de unidades
- los números naturales y decimales
- fracción, operaciones con fracciones y fracciones equivalentes
- la descomposición de números
- el conteo
- las operaciones fundamentales (suma, resta, multiplicación y división) y sus algoritmos aritméticos
- la propiedad conmutativa y asociativa
- el principio de agrupamiento (unidades de orden superior a partir de agrupamientos de una cantidad determinada de unidades de un orden inmediatamente inferior)
- el principio de posición que regula la escritura numérica por el que se atribuye un valor diferente a una misma cifra según la posición que ocupe
- las medidas de longitud, superficie y volumen
- las psicomotricidad y la coordinación oculo-manual
- la resolución de problemas
- las competencias lógico-matemáticas
- la indagación, la experimentación y la investigación
- la observación y la concentración
- el trabajo autónomo
- la auto-confianza
- la capacidad de razonar
Desarrollo
La mejor manera de introducir un material es que de manera individual y libre la niña o el niño manipule y explore todas las posibilidades que le aportan los bloques multibase. Podemos ayudar a que la criatura verbalice sus impresiones y hallazgos formulando preguntas como: ¿qué es ésto?, ¿qué forma tienen?, ¿de qué están formados?, ¿qué podemos hacer?, ¿para qué sirve?, etc.
El paso siguiente sería ayudar en la representación de los números naturales. Este proceso de representación numérica debe realizarse de forma gradual, empezando por números de un dígito e ir aumentando progresivamente.
Gracias a los bloques multibase, las niñas y niños podrán observar de forma manipulativa y concreta los cambios de orden y comprender que 10 unidades de un orden forman una del orden inmediatamente superior. Si trabajamos en base 6, por ejemplo, 6 unidades de un orden formarían una unidad de la orden inmediatamente superior.
Este material también permite convertir en concreto y manipulable algo abstracto como las operaciones de suma, resta, multiplicación y división y sus respectivos algoritmos.
- La suma
Se representan los sumandos por separado y luego se juntan las representaciones y se realiza el conteo total. Es importante iniciar a la criatura con operaciones sencillas donde no haya que hacer cambios de unidades de orden en el resultado para luego ir introduciendo sumandos que permitan hacer esos cambios de orden con el total. Por ejemplo, si en el resultado hay 10 o más cubos, pues los cambiamos por las barras correspondientes porque son la unidad directamente superior. Una vez afianzado este conocimiento, iremos añadiendo dificultad a las operaciones para e iremos añadiendo las placas y los bloques, es decir, las centenas y los millares.
- La resta
Para restar con lo bloques de base 10, representamos el minuendo y retiramos las unidades correspondientes al sustraendo. Al igual que con la suma, empezaremos con operaciones sencillas que no requieran transformaciones de unidades a decenas, de decenas a centenas o de centenas a millares. Una vez dominadas las restas sencillas pasamos a restas que incluyan cambios de orden e ir añadiendo dificultad paulatinamente.
- La multiplicación
Para representar las partes de la multiplicación ponemos el multiplicando tantas veces como el multiplicador indique. Así, si queremos representar 5×3, colocamos 3 grupos de 5 unidades. En este punto, la criatura podrá comprender perfectamente la propiedad conmutativa de la multiplicación si colocamos 5 grupos de 3 unidades. Gracias a la multiplicación también podremos trabajar de manera manipulativa el área y el volumen y sus características.
- La división
Representamos el dividendo y se reparte en tantos grupos como indica el divisor. Cada grupito será el cociente y lo que sobre (si sobra) será el resto. Al ir añadiendo dificultad, elegiremos números que necesiten transformaciones equivalentes. Por ejemplo, si queremos dividir el bloque que representa a la unidad de millar, primero debemos transformarlo en 10 placas en placas.
- La operaciones decimales
Los decimales se trabajan cambiando la unidad de base. Es decir, si hasta ahora hemos considerado que unidad básica era el cubo de 1x1x1, ahora se puede considerar la placa como la unidad y entonces las barras representan las décimas y los cubos las centésimas. Si queremos trabajar las milésimas, entonces el bloque de 10x10x10 unidades sería la unidad, las placas las décimas, las barras las centésimas y los cubos pequeños las milésimas.
En este vídeo se ilustra muy bien todo lo explicado.
Material imprimible
Aquí os dejo una versión barata de este material que se puede descargar, imprimir y recortar.
Si queréis que el material os dure más, podéis reutilizar un cartón y pegar en él las unidades, decenas y centenas. Incluso podéis pegar un cuadrado de cartón de 10×10 a las caras del bloque para darle mayor rigidez y consistencia. Otra opción sería plastificar el material.
Además podéis imprimirlo en papel de colores o dejar que las niñas y niños lo coloreen y si son capaces que lo recorten. Así, si construyen su propio material se sentirán con más motivación para usarlo y aprender matemáticas.
Aquí os dejo unas fotos de cómo queda el material.
Como el desarrollo del bloque de 10x10x10 cm no cabe en un DIN-A4, tenemos que montarlo por partes. Recortamos y doblamos por la línea punteada. Luego unimos con pegamento de barra las caras que tienen pestañas de la manera que se ve en la imagen, dejando las dos que no tienen pestañas para el final. Pegamos así: